
3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 1/22

Introducing Pitching Efficiency, a new metric
to evaluate pitchers' performance in baseball

by Chung-Hao Lee </br>
March 25, 2022</br>

Introduction

The original idea was inspired by Moneyball, the film in 2011. In the film, Paul DePodesta (a

baseball analyst) told Billy Beane (a general manager) that the most important metric in

baseball was outs. Every baseball team only has 27 outs in a game. Who scores higher

before 27 outs win. That's why after the conversation, Oakland Athletics (the Moneyball

team) valued on-base percentage (OBP) the most because OBP is a metric to evaluate how

good a hitter can get on base before the outs.

As more and more advanced metrics to evaluate hitters' performance, however, metrics

evaluating pitchers' performance so far is more focusing on the run instead of out. ERA and

FIP, two iconic metrics used in baseball analytics, are all related to run. To my knowledge,

there are no metrics to evaluate pitchers' performance based on out.

Here, I introduce Pitching Efficiency (PE), a new metric to evaluate pitcher performance.

Formula of Pitiching Efficiency:

=

Where pitches mean how many balls a pitcher throws. TB (Total Bases) means how many

bases are allowed by a pitcher. Outs mean how many outs are earned by a pitcher. Normally,

Websites (such as Baseball-reference, Fangraphs) only have innings pitched (IP). I

calculated outs by using the formula: (full number of IP)3 + (decimal of IP)10.

Quality of out is different. For example, A earns two outs with 0 bases allowed. B also earns

two outs but with 1 base allowed. In this case, we can say that A has a better quality out

than B because A doesn't have any base allowed. That's why in the formula of Pitching

Efficiency, I use to reflect the quality of out. </br>
 reflects how many balls a

pitcher needs to throw to earn a quality out. Usually fewer pitches per quality out mean

better a pitcher is. Here I used multiplicative inverse because after inversion numbers of

Pitching Efficiency can fall between 0 and 100, and the larger the number the better a

pitcher. Let's go back to our example, both A and B used 10 pitches to get 2 outs. For A, his

∗ 100
1

pitches

outs

1+TB

∗ 100

outs

1+TB

pitches

outs

1+TB

pitches

outs

1+TB

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 2/22

PE is = 20. For B, his PE is = 10. From this case, we can see that A's PE

is greater than B. This means A has higher efficiency than B.

Data Processing

All data are collected from https://www.baseball-reference.com/ and

https://www.fangraphs.com/. </br>
I set the qualification filter is IP > 50.

∗ 100

2

1+0

10
∗ 100

2

1+1

10

In [1]: # Loading libraries

import pandas as pd # for data processing

import numpy as np # for data processing

import matplotlib.pyplot as plt # for data visualization

import seaborn as sns # for data visualization

from matplotlib.lines import Line2D # for data visualization

%matplotlib inline

In [2]: # Loading data collected from https://www.fangraphs.com/.

fang_2021 = pd.read_csv("2021_fang.csv", index_col=False)

fang_2020 = pd.read_csv("2020_fang.csv", index_col=False)

fang_2019 = pd.read_csv("2019_fang.csv", index_col=False)

fang_2018 = pd.read_csv("2018_fang.csv", index_col=False)

fang_2017 = pd.read_csv("2017_fang.csv", index_col=False)

fang_2016 = pd.read_csv("2016_fang.csv", index_col=False)

fang_2015 = pd.read_csv("2015_fang.csv", index_col=False)

In [3]: # Loading data collected from https://www.baseball-reference.com/.

br_2021 = pd.read_csv("2021_batting_against.csv", index_col=False)

br_2020 = pd.read_csv("2020_batting_against.csv", index_col=False)

br_2019 = pd.read_csv("2019_batting_against.csv", index_col=False)

br_2018 = pd.read_csv("2018_batting_against.csv", index_col=False)

br_2017 = pd.read_csv("2017_batting_against.csv", index_col=False)

br_2016 = pd.read_csv("2016_batting_against.csv", index_col=False)

br_2015 = pd.read_csv("2015_batting_against.csv", index_col=False)

In [4]: # Merge data from baseball-reference and fangraphs

df_2021 = pd.merge(fang_2021, br_2021, how = "left", left_on='id', right_on='id
df_2020 = pd.merge(fang_2020, br_2020, how = "left", left_on='id', right_on='id
df_2019 = pd.merge(fang_2019, br_2019, how = "left", left_on='id', right_on='id
df_2018 = pd.merge(fang_2018, br_2018, how = "left", left_on='id', right_on='id
df_2017 = pd.merge(fang_2017, br_2017, how = "left", left_on='id', right_on='id
df_2016 = pd.merge(fang_2016, br_2016, how = "left", left_on='id', right_on='id
df_2015 = pd.merge(fang_2015, br_2015, how = "left", left_on='id', right_on='id

In [5]: # Assign year to each year data

df_2021['year'] = 2021

df_2020['year'] = 2020

df_2019['year'] = 2019

df_2018['year'] = 2018

df_2017['year'] = 2017

df_2016['year'] = 2016

df_2015['year'] = 2015

In [6]: # Define if a pitcher belongs to starting pitcher. If a pitcher has record of g

https://www.baseball-reference.com/
https://www.fangraphs.com/

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 3/22

df_2021['SP'] = df_2021['GS'].map(lambda x: 'y' if x >0 else 'n')

df_2020['SP'] = df_2020['GS'].map(lambda x: 'y' if x >0 else 'n')

df_2019['SP'] = df_2019['GS'].map(lambda x: 'y' if x >0 else 'n')

df_2018['SP'] = df_2018['GS'].map(lambda x: 'y' if x >0 else 'n')

df_2017['SP'] = df_2017['GS'].map(lambda x: 'y' if x >0 else 'n')

df_2016['SP'] = df_2016['GS'].map(lambda x: 'y' if x >0 else 'n')

df_2015['SP'] = df_2015['GS'].map(lambda x: 'y' if x >0 else 'n')

In [7]: # Convert datatype of Hard% from string to float for better exploration in data
df_2021['Hard%'] = df_2021['Hard%'].str.split('%').str[0].astype(float)

df_2020['Hard%'] = df_2020['Hard%'].str.split('%').str[0].astype(float)

df_2019['Hard%'] = df_2019['Hard%'].str.split('%').str[0].astype(float)

df_2018['Hard%'] = df_2018['Hard%'].str.split('%').str[0].astype(float)

df_2017['Hard%'] = df_2017['Hard%'].str.split('%').str[0].astype(float)

df_2016['Hard%'] = df_2016['Hard%'].str.split('%').str[0].astype(float)

df_2015['Hard%'] = df_2015['Hard%'].str.split('%').str[0].astype(float)

In [8]: # Combine all tables into one dataset

df = pd.concat([df_2021, df_2020, df_2019, df_2018, df_2017, df_2016, df_2015])

In [9]: # Define "K/BB", a metric to measure how good a pitcher to control pitching.

df['K/BB'] = df['SO'] / df['BB']

In [10]: # Define "out". Please see the formula and explanation of "out" in Introduction
df['outs'] = (df['IP_x'] - df['IP_x']%1)*3 + (df['IP_x']%1)*10

In [11]: # Define "Pitching Efficiency". Please see the formula and explanation of "Pitc
df['Pitching Efficiency'] = ((df['outs'] / (1 + df['TB'])) / df['Pitches'])*100

In [12]: # Browse the dataset

df

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 4/22

id Name_x Team BABIP GB/FB LD% GB% FB% IFFB% HR/FB ... vSL

0 1 A.J.
Minter

ATL 0.298 1.31 20.70% 45.00% 34.30% 6.30% 4.20% ... NaN

1 2 Aaron
Bummer

CHW 0.298 6.00 11.20% 76.10% 12.70% 11.80% 17.60% ... NaN

2 3 Aaron
Civale

CLE 0.249 1.21 17.80% 45.00% 37.20% 8.20% 17.20% ... NaN

3 4 Aaron
Loup

NYM 0.257 1.89 23.00% 50.40% 26.60% 0.00% 2.70% ... NaN

4 5 Aaron
Nola

PHI 0.308 1.00 19.00% 40.50% 40.50% 10.90% 13.50% ... NaN

...

324 325 Yusmeiro
Petit

SFG 0.278 0.71 21.30% 32.60% 46.00% 9.10% 10.00% ... NaN

325 326 Zach
Duke

CHW 0.262 2.38 17.20% 58.30% 24.50% 5.40% 24.30% ... 82.5

326 327 Zach
McAllister

CLE 0.346 1.21 20.90% 43.30% 35.80% 9.00% 10.40% ... NaN

327 328 Zack
Britton

BAL 0.308 8.33 11.40% 79.10% 9.50% 0.00% 20.00% ... NaN

328 329 Zack
Greinke

LAD 0.229 1.46 19.10% 48.00% 32.90% 9.30% 7.30% ... 87.3

2108 rows × 100 columns

So far, it looks quite good. All tables were combined into a dataset. Pitching Efficiency was

also added to the dataset.</br>
Let's do data visualization and explore the Pitching

Efficiency.

Data Visualiztion

Out[12]:

In [13]: # Explore Pitching Efficiency's frequency and yearly changing.

x=df['Pitching Efficiency']

median = np.quantile(x, 0.5).round(2)

q_25 = np.quantile(x, 0.25).round(2)

q_75 = np.quantile(x, 0.75).round(2)

q_90 = np.quantile(x, 0.90).round(2)

q_10 = np.quantile(x, 0.10).round(2)

print('90 percentile of Pitching Efficiency: ' + str(q_90))

print('75 percentile of Pitching Efficiency: ' + str(q_75))

print('Median of Pitching Efficiency: ' + str(median))
print('25 percentile of Pitching Efficiency: ' + str(q_25))

print('10 percentile of Pitching Efficiency: ' + str(q_10))

fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(16, 8))

g = sns.distplot(ax = ax1, x=df['Pitching Efficiency'])

g.set(xlabel = 'Pitching Efficiency')

ax3 = g.twinx()

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 5/22

90 percentile of Pitching Efficiency: 0.26

75 percentile of Pitching Efficiency: 0.21

Median of Pitching Efficiency: 0.14

25 percentile of Pitching Efficiency: 0.08

10 percentile of Pitching Efficiency: 0.07

/Users/yginger/opt/anaconda3/lib/python3.8/site-packages/seaborn/distribution
s.py:2619: FutureWarning: `distplot` is a deprecated function and will be remo
ved in a future version. Please adapt your code to use either `displot` (a fig
ure-level function with similar flexibility) or `histplot` (an axes-level func
tion for histograms).

 warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='year', ylabel='Pitching Efficiency'>

We can see that the range of Pitching Efficiency (PE) from 2015 to 2021 is 0 to 0.5 and

most Pitching Efficiency fall near 0.1. </br>
90 percentile is at 0.26. If a pitcher's PE is

greater than 0.26, we define him as a great pitcher.</br>
75 percentile is at 0.21. If a

pitcher's PE is greater than 0.21, we define him as a good pitcher.</br>
Median is at

0.14. If a pitcher's PE is greater than 0.14, we define him as an average pitcher.</br>
25

percentile is at 0.08. If a pitcher's PE is greater than 0.08, we define him as a below-

average pitcher.</br>
10 percentile is at 0.07. If a pitcher's PE is greater than 0.07, we

define him as a not-good pitcher.</br>

Besides 2020, the short season due to COVID-19, PE are in the similar rage through

years. We can say that PE is a stable metric.

sns.boxplot(x=x, ax=ax3)

ax3.set(ylim=(-.5, 10))

sns.boxplot(ax = ax2, x=df['year'], y=df['Pitching Efficiency'])

Out[13]:

In [14]: # Create regplot with hue function

def hue_regplot(data, x, y, hue, palette=None, **kwargs):

 from matplotlib.cm import get_cmap

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 6/22

[<AxesSubplot:xlabel='Pitching Efficiency', ylabel='xERA'>,

 <AxesSubplot:xlabel='Pitching Efficiency', ylabel='xERA'>]

 regplots = []

 levels = data[hue].unique()

 if palette is None:

 default_colors = get_cmap('tab10')

 palette = {k: default_colors(i) for i, k in enumerate(levels)}

 for key in levels:

 regplots.append(

 sns.regplot(

 x=x,

 y=y,

 data=data[data[hue] == key],

 color=palette[key],

 **kwargs

)

)

 return regplots

In [15]: # Explore relationship between PE and ERA, xERA.

fig, axs = plt.subplots(2,2, figsize=(12, 12))

sns.regplot(ax=axs[0,0], data = df, x='Pitching Efficiency', y='ERA')

axs[0, 0].set_title("ERA")

axs[0, 0].set(xlabel=None)

sns.regplot(ax=axs[0,1], data = df, x='Pitching Efficiency', y='xERA')

axs[0, 1].set_title("xERA")

axs[0, 1].set(xlabel=None)

hue_regplot(ax=axs[1,0], data = df, x='Pitching Efficiency', y='ERA', hue = 'SP
hue_regplot(ax=axs[1,1], data = df, x='Pitching Efficiency', y='xERA', hue = 'S

Out[15]:

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 7/22

xERA is expected ERA. Detailed explanation can go to

https://www.mlb.com/glossary/statcast/expected-era.

ERA is the most iconic metric to measure a pitcher's performance. Lower ERA better a

pitcher is.

From the top two plots, we can see that as PE goes higher, both ERA and xERA go lower.

This means if a pitcher have more efficiency, he will have lower ERA or xERA.

From the bottom two plots, we can see that as we seperate starting pitchers (orange) and

relievers (blue), relievers has more negative correlation between ERA or xERA and PE.

In [16]: # Explore relationship between PE and FIP, xFIP.

fig, axs = plt.subplots(2,2, figsize=(12, 12))

sns.regplot(ax=axs[0,0], data = df, x='Pitching Efficiency', y='FIP')

axs[0, 0].set_title("FIP")

axs[0, 0].set(xlabel=None)

sns.regplot(ax=axs[0,1], data = df, x='Pitching Efficiency', y='xFIP')

https://www.mlb.com/glossary/statcast/expected-era

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 8/22

[<AxesSubplot:xlabel='Pitching Efficiency', ylabel='xFIP'>,

 <AxesSubplot:xlabel='Pitching Efficiency', ylabel='xFIP'>]

xFIP is expected FIP. Detailed explanation can go to

https://www.mlb.com/glossary/advanced-stats/expected-fielding-independent-pitching

FIP is another the most iconic metric to measure a pitcher's performance. Lower FIP better a

pitcher is.

Compared to ERA, FIP only count SO, BB and HR. This can remove defense effect to a

pitcher.

From the top two plots, we can see that as PE goes higher, both FIP and xFIP go lower. This

means if a pitcher have more efficiency, he will have lower FIP or xFIP.

axs[0, 1].set_title("xFIP")

axs[0, 1].set(xlabel=None)

hue_regplot(ax=axs[1,0], data = df, x='Pitching Efficiency', y='FIP', hue = 'SP
hue_regplot(ax=axs[1,1], data = df, x='Pitching Efficiency', y='xFIP', hue = 'S

Out[16]:

https://www.mlb.com/glossary/advanced-stats/expected-fielding-independent-pitching

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 9/22

From the bottom two plots, we can see that as we seperate starting pitchers (orange) and

relievers (blue), relievers has more negative correlation between FIP or xFIP and PE.

<seaborn.axisgrid.FacetGrid at 0x7ff2f27f5a30>

Fastball velocity is one of metric to measure quality of a pitch. Faster pitch is harder to hit.
A

better pitcher (higher PE) could have higher fastball velocity.
These figures show that higher

In [17]: # Explore relationship between PE and fastball velocity.

g1 = sns.lmplot(data = df, x='Pitching Efficiency', y='vFA', lowess=True)

g1.set(ylim=(80, None), ylabel='Fastball Velocity')

g = sns.lmplot(data = df, x='Pitching Efficiency', y='vFA', hue = 'SP', lowess=
g.set(ylim=(80, None), ylabel='Fastball Velocity')

Out[17]:

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 10/22

PE has higher fastball velocity. Reliever has more positive correlation between PE and

fastball velocity.

<seaborn.axisgrid.FacetGrid at 0x7ff2f38ff550>

These figures explore the relationship between IP (pitch innings) and PE. To my surprise, IP

and PE have a negative correlation. My original thought was because high PE means a

In [18]: # Explore relationship between PE and IP.

g1 = sns.lmplot(data = df, x='Pitching Efficiency', y='IP_x', lowess=True)

g1.set(ylim=(50, None), ylabel='IP')

g = sns.lmplot(data = df, x='Pitching Efficiency', y='IP_x', hue = 'SP', lowess
g.set(ylim=(50, None), ylabel='IP')

Out[18]:

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 11/22

pitcher can use fewer pitches to get quality out, therefore high PE pitchers should have

higher IP.

However, these figures show the opposite results to my original thought. I believe there are

two reasons to explain. </br>
First, high PE pitchers are valuable. Baseball franchises value

these pitchers and won't allow these pitchers to have too many innings. In other words,

baseball franchises protect high PE pitchers to prevent injury. </br>
Second, most high PE

pitchers are pitchers who can throw very fast. For example, for relievers, Jose Leclerc

whose PE was 0.49 in 2018 can throw an average of 95mph fastball. Josh Hader whose PE

was 0.47 in 2021 can throw an average 96mph fastball. For SP, Taylor Glasnow whose PE

was 0.34 in 2019 can throw average 97mph fastball.

<seaborn.axisgrid.FacetGrid at 0x7ff2f3b7d3d0>

In [19]: # Explore relationship between PE and OPS batting against.

sns.lmplot(data = df, x='Pitching Efficiency', y='OPS')

sns.lmplot(data = df, x='Pitching Efficiency', y='OPS', hue = 'SP')

Out[19]:

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 12/22

OPS batting against is another metric to measure pitcher's performance.

A better pitcher (higher PE) should have lower OPS batting against. </br>
These figures

show that higher PE has lower OPS. Reliever has more negative correlation between PE and

OPS.

<seaborn.axisgrid.FacetGrid at 0x7ff2f37c7f70>

In [20]: # Explore relationship between PE and K/9.

sns.lmplot(data = df, x='Pitching Efficiency', y='K/9')

sns.lmplot(data = df, x='Pitching Efficiency', y='K/9', hue = 'SP')

Out[20]:

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 13/22

K/9 means how many strikeouts a pitcher can get in 9 innings. Higher K/9 means a pitcher

has more powerful pitches to retire hitter.

A better pitcher (higher PE) should have higher K/9. </br>
These figures show that higher

PE has higher K/9. Reliever has more positive correlation between PE and K/9.

<seaborn.axisgrid.FacetGrid at 0x7ff2f2f14b20>

In [21]: # Explore relationship between PE and K/9.

sns.lmplot(data = df, x='Pitching Efficiency', y='K/BB')

sns.lmplot(data = df, x='Pitching Efficiency', y='K/BB', hue = 'SP')

Out[21]:

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 14/22

K/BB means how many strikeouts a pitcher can get per walk he giving. Higher K/BB means a

pitcher has good control on his pitching.

A better pitcher (higher PE) should have higher K/BB.
These figures show that PE has

slightly positive correlation with K/BB. Higher PE have slightly higher K/BB.

<seaborn.axisgrid.FacetGrid at 0x7ff2f435bbb0>

In [22]: # Explore relationship between PE and Hard%.

sns.lmplot(data = df, x='Pitching Efficiency', y='Hard%')

sns.lmplot(data = df, x='Pitching Efficiency', y='Hard%', hue = 'SP')

Out[22]:

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 15/22

Hard% means high quality of contact by a hitter. Detailed explanation can go to

https://library.fangraphs.com/offense/quality-of-contact-stats/.

A better pitcher (higher PE) should have lower Hard%.
These figures show that higher PE

has lower Hard%. Reliever has more negative correlation between PE and Hard%.

<seaborn.axisgrid.FacetGrid at 0x7ff2f43c4b80>

In [23]: # Explore relationship between PE and HR/9.

sns.lmplot(data = df, x='Pitching Efficiency', y='HR/9')

sns.lmplot(data = df, x='Pitching Efficiency', y='HR/9', hue = 'SP')

Out[23]:

https://library.fangraphs.com/offense/quality-of-contact-stats/

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 16/22

HR/9 means how many homeruns a pitcher is allowed in 9 innings. Higher HR/9 means a

pitcher is allowed hitters to have more homeruns.

A better pitcher (higher PE) should have lower HR/9. These figures show that higher PE has

lower HR/9. Reliever has more negative correlation between PE and HR/9.

<seaborn.axisgrid.FacetGrid at 0x7ff2f4737cd0>

In [24]: # Explore relationship between PE and GB/FB.

sns.lmplot(data = df, x='Pitching Efficiency', y='GB/FB')

sns.lmplot(data = df, x='Pitching Efficiency', y='GB/FB', hue = 'SP')

Out[24]:

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 17/22

Due to flyball revolution, recent years more and more hitters are hit balls to air, which are

bad to pitchers because that increases probability of extrabase hits.

GB/FB means ration of ground balls to fly balls. Higher number means more ground balls

and less fly balls and good to pitchers.

A better pitcher (higher PE) should have higher GB/FB. These figures show that higher PE

has higher GB/FB. Reliever has more positive correlation between PE and GB/FB.

<seaborn.axisgrid.FacetGrid at 0x7ff2f4911be0>

In [25]: # Explore relationship between PE and launch angle.

sns.lmplot(data = df, x='Pitching Efficiency', y='LA')

sns.lmplot(data = df, x='Pitching Efficiency', y='LA', hue = 'SP')

Out[25]:

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 18/22

We just see HR/9 and GB/FB. We found that higher PE has lower HR/9 and higher GB/FB.

Launch angle (LA) is the angle a hitter hit from a pitch.

Lower LA means a hitting ball goes to ground instead of air.

Because we saw that higher PE has lower HR/9 and higher GB/FB, here we should see

higher EV have lower LA.
As a result, higher EV indeed have lower LA, which matches what

we observed before.

<seaborn.axisgrid.FacetGrid at 0x7ff2f4bea160>

In [26]: # Explore relationship between PE and Age.

sns.lmplot(data = df, x='Pitching Efficiency', y='Age', col = 'year', lowess=Tr

Out[26]:

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 19/22

Besides 2020, all other years have near flat or slightly upward trend line. It means PE has

near zero correlation with age.

<seaborn.axisgrid.FacetGrid at 0x7ff2f4582f40>

In [27]: # Explore relationship between PE and WAR.

sns.lmplot(data = df, x='Pitching Efficiency', y='WAR', lowess=True)

sns.lmplot(data = df, x='Pitching Efficiency', y='WAR', hue = 'SP', lowess=True

Out[27]:

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 20/22

WAR measures a player's value in all facets of the game by deciphering how many more

wins he's worth than a replacement-level player at his same position. Detailed explanation

can go to https://www.mlb.com/glossary/advanced-stats/wins-above-replacement.

Higher WAR means a pitcher is more valuable.
A better pitcher (higher PE) should have

higher WAR. These figures show that higher PE has higher WAR. Reliever has more positive

correlation between PE and WAR.

I also plotted the Pearson correlation heatmap and see the correlation between PE and

metrics.

The correlation coefficient has values between -1 to 1

— A value closer to 0 implies weaker correlation (exact 0 implying no correlation)

— A value closer to 1 implies stronger positive correlation

— A value closer to -1 implies stronger negative correlation

In [28]: # Explore correlation between PE and other metrics.

cor = df[['Pitching Efficiency', 'ERA', 'xERA', 'FIP', 'xFIP', 'IP_x', 'GB/FB',

plt.figure(figsize=(20, 10))

sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)

plt.show()

In [29]: s = sns.barplot(data = df, x='Team', y = 'Pitching Efficiency')

for item in s.get_xticklabels():

 item.set_rotation(60)

https://www.mlb.com/glossary/advanced-stats/wins-above-replacement

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 21/22

From 2015 to 2021, teams with highest PE are LA Dodgers, SF Giants, and Tempa Bay Rays.

This makes sense. For past 7 years, these teams are famous for their competative pitching

rotations.

[Text(0.5, 1.0, 'Patrick Corbin')]

I use Patrick Corbin as an example. As we can see from the graph, Patrick's PE started to

drop from 2015 and remained at low since then. xERA reflect Patrick's recession years later.

In [30]: # Extract "Patrick Corbin" from the whole dataset

new_index = np.arange(7)

patrick_corbin = df[df['Name_x']=='Patrick Corbin']

#clay[clay.index.duplicated()]

patrick_corbin.set_index(new_index, inplace = True)

#Plot

g = sns.lineplot(data = patrick_corbin, x = 'year', y = 'Pitching Efficiency',
ax = g.twinx()

g = sns.lineplot(data = patrick_corbin, x = 'year', y = 'xERA', ax = ax, color=
g.legend(handles=[Line2D([], [], marker='_', color="#FFD520", label='PE'), Line
g.set(title='Patrick Corbin')

Out[30]:

3/26/22, 11:32 AM Pitching Efficiency

file:///Users/yginger/Downloads/Pitching Efficiency.html 22/22

[Text(0.5, 1.0, 'Clayton Kershaw')]

Clayton Kershaw is another example. As we can see from the graph, Clayton's PE started to

drop from 2016 and remained at low since then. xERA reflect Clayton's recession a year

later.

Summary

Pitiching Efficiency is a useful metric to evaluate pitcher's performance. It is eailsy to

calculate and use. Compared to other metrics, PE covers more aspects of pitcher and can

reflect more about pitcher's performance.

In [31]: # Extract "Clayton Kershaw" from the whole dataset

new_index = np.arange(7)

clay = df[df['Name_x']=='Clayton Kershaw']

#clay[clay.index.duplicated()]

clay.set_index(new_index, inplace = True)

#Plot

g = sns.lineplot(data = clay, x = 'year', y = 'Pitching Efficiency', color="#FF
ax = g.twinx()

g = sns.lineplot(data = clay, x = 'year', y = 'xERA', ax = ax, color="#E03A3E")
g.legend(handles=[Line2D([], [], marker='_', color="#FFD520", label='PE'), Line
g.set(title='Clayton Kershaw')

Out[31]:

